Number and Algebra: Number and Place Value: Rounding Reasoning

Australian Curriculum This lesson plan could be used to support the teaching and learning of the following Content Descriptions from the Australian Curriculum. Y5 - Number and Algebra Use estimation and rounding to check the reasonableness of answers to calculations (ACMNA099) Compare, order and represent decimals (ACMNA 105)
Child-Friendly Aim: I can solve reasoning problems by rounding numbers to a required degree of accuracy.
Success Criteria: l can break down complex problems into smaller steps. I can use mathematical language to explain solutions to problems.
:---
:---
Lesson Pack
Round, digit, place value, ten, hundred, thousand,
ten thousand, hundred thousand, million,
accuracy.
:---
Rounding Reasoning Activity Sheet
- per pair
Explain Yourself Activity Sheet - per child

Prior Learning: | It will be helpful if children have covered place value of numbers up to 10000000 and to three decimal places, as well as rounding |
| :--- |
| to a required degree of accuracy. |

Learning Sequence

	Rounding Reasoning: Share the steps that children will follow to solve the rounding reasoning problems throughout the lesson, referring to the Lesson Presentation.	
	Rounding Reasoning 1a: Use the step-by-step slides in the Lesson Presentation to model how to solve the rounding reasoning problem. Encourage children to share what they know about rounding that will help them to solve the problem.	
	Rounding Reasoning 1b: Recording their answers on the Rounding Reasoning Activity Sheet, the children work with a partner to apply the strategy to a similar question, explaining their reasoning. Share answers and discuss.	
	Rounding Reasoning 2a: Use the step-by-step slides in the Lesson Presentation to model how to solve the rounding reasoning problem. Encourage children to share what they know about rounding that will help them to solve the problem.	\square
	Rounding Reasoning 2b: Recording their answers on the Rounding Reasoning Activity Sheet, the children work with a partner to apply the strategy to a similar question, explaining their reasoning. Share answers and discuss.	Ω
	Rounding Reasoning 3a: Use the step-by-step slides in the Lesson Presentation to model how to solve the rounding reasoning problem. Encourage children to share what they know about rounding that will help them to solve the problem.	
	Rounding Reasoning 3b: Recording their answers on the Rounding Reasoning Activity Sheet, the children work with a partner to apply the strategy to a similar question, explaining their reasoning. Share answers and discuss.	
	Explain Yourself! Children read the questions and answers on the differentiated Explain Yourself Activity Sheet, and decide whether they agree or disagree with the answers given. Can children work step-by-step and use mathematical language to explain how to round numbers to solve the problems? Children solve and explain Children solve and explain Children solve and explain problems involving more complex problems more complex problems rounding with whole involving rounding with involving rounding with numbers and decimal whole numbers and whole numbers and numbers to two decimal decimal numbers to three decimal numbers to four places. decimal places. decimal places. Calculators may be needed for one problem.	
	Planetary Problem: Share the rounding problem shown on the Lesson Presentation. Children discuss whether they agree with the answer given, and explain why or why not. Reveal and discuss the explanation of the problem.	

 Mathematics

Number and Algebra

Rounding Reasoning

Aim

- I can solve reasoning problems by rounding numbers to a required degree of accuracy.

Success Criteria

- I can break down complex problems into smaller steps.
- I can use mathematical language to explain solutions to problems.

Rounding Reasoning

Can you use your rounding skills to solve these reasoning problems?
We will solve each problem by following the same steps:

- read the question;
- highlight the information to help us understand it;
- use what we already know to solve the problem;
- check we have solved the problem fully.

Rounding Reasoning 1a

First, we read the question.

Esme thinks of two 2-digit numbers. They both round to three to the nearest whole number and their sum is 5.9.

Which numbers could Esme be thinking of?

Rounding Reasoning 1a

Next, we highlight the key information to help us understand the question.

Esme thinks of two 2-digit numbers. They both round to three to the nearest whole number and their sum is 5.9.

Which numbers could Esme be thinking of?

Rounding Reasoning 1a

Next, we need to think about what we already know in order to help us answer the question correctly.

Esme thinks of two 2-digit numbers. They both round to three to the nearest whole number and their sum is 5.9.

Which numbers could Esme be thinking of?

We know that the digits $1,2,3$ and 4 tell us to round down.

We know that the digits 5, 6, 7, 8 and 9 tell us to round up.

We know that the tenths digit tells us which whole number to round to.

Rounding Reasoning 1a

2-digit numbers that round down to 3 :
3.1
3.2
3.3
3.4

Rounding Reasoning 1a

Now we are ready to apply our knowledge to solve the problem.

Esme thinks of two 2-digit numbers. They both round to three to the nearest whole number and their sum is 5.9.

Which numbers could Esme be thinking of?

2-digit numbers
that round up to 3:
2.5
2.6
2.7
2.8
2.9

2-digit numbers
that round down to 3:
3.1
3.2
3.3
3.4

Pairs of 2-digit
numbers that round
to 3 with a sum of 5.9 :
$2.5+3.4$
$2.6+3.3$
$2.7+3.2$
$2.8+3.1$

Rounding Reasoning 1a

Let's check our answer by looking back at the question.

Esme thinks of two 2-digit numbers. They both round to three to the nearest whole number and their sum is 5.9.

Which numbers could Esme be thinking of?
There are several possibilities for the numbers Esme may have been thinking of! The numbers in each pair both round to 3 to the nearest whole number and their sum is 5.9.
2.5 and 3.4
2.7 and 3.2
2.6 and 3.3
2.8 and 3.1

Rounding Reasoning 1b

Work with your partner to solve the first question on your Rounding Reasoning Talk Partners Activity Sheet.

Rounding Reasoning 1b

Work with your partner to solve the first question on your Rounding Reasoning Talk Partners Activity Sheet.

Rounding Reasoning 2 a

Let's try another one. First, we read the question.
These children each have one of these number cards. Can you work out which child has which number card?

Rounding Reasoning 2a

Next, we highlight the key information.
These children each have one of these number cards. Can you work out which child has which number card?

Rounding Reasoning 2a

Now we think about what we already know.

These children each have one of these number cards.
Can you work out which child has which number card?

78932	78841
78945	78886

We know that the digits 5,6 , 7,8 and 9 tell us to round up.

We know that we need to consider the digit in the place before the value we are rounding to.

My number is 79000 to
the nearest 1000.

My number is
78950 to the nearest 10.

My number is 78900 to the nearest 100.

My number is 78890 to the nearest 10.

Rounding Reasoning 2 a

We are ready to apply this knowledge to solve the problem. Let's look at Maisie's statement first.

78932

78841
78945
78886

We know that her number must have 78 at the start, because all the numbers in the number cards do. We also know that it must round up to 79000 , so the digit in the hundreds place must be higher than 5. However, all the number cards have digits higher than 5 in the hundreds place, so we can't narrow down Maisie's number yet.

My number is 79000 to the

Rounding Reasoning 2a

Let's look at Kieran's statement next.

78932

78841 78945 78886

In order to round to 78950 to the nearest 10, Kieran's number must be between 78945 and 78954. There is only one number card that is between these numbers, so Kieran's number must be 78945 .

```
My number is
78950 to the


\section*{Rounding Reasoning 2a}

Now we can look at Harry's statement.

\section*{78932}

78841
78945
78886

Harry's number must be between 78850 and 78949 in order to round to 78900 to the nearest 100 . We know that 78945 is Kieran's number, so it can't be that one. There are two possibilities for Harry's number - both 78932 and 78886 round to 78900 . We can't be sure which one is Harry's number just yet.

\section*{My number is 78900 to the nearest 100.}

\section*{Rounding Reasoning 2a}

Let's see if Renée's statement helps us.

\section*{78932}

78841
78945
78886

Renée's number must be between 78885 and 78894 in order to round to 78890 to the nearest 10 . We can see that 78886 fits this description, so this must be Renée's number.

\section*{My number is 78890 to the nearest 10.}


\section*{Rounding Reasoning 2a}

Now we need to go back and match up the last two number cards.

\section*{78932 \\ 78841}

78945
78886

We worked out that Harry's number could have been 78886 or 78932.
We can now see that it must be 78932 .

> My number is 78900 to the nearest 100 .

\section*{Rounding Reasoning 2 a}

Now we need to go back and match up the last two number cards.

\section*{78932}

78841
78945
78886

Maisie's number could have been any of the four number cards, so we know that her number must be 78841 as it is the only one left!

My number is 79000 to the nearest 1000.

\section*{Rounding Reasoning 2b}

Work with your partner to solve the second question on your Rounding Reasoning Talk Partners Activity Sheet.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Rounding Reasoning} \\
\hline \multicolumn{3}{|l|}{I can solve reasoning problems by rounding numbers to a required degree of accuracy.} \\
\hline Rounding Reasoning 1 & & Rounding Reasoning 2 \\
\hline \begin{tabular}{l}
Ava thinks of two 3-digit numbers. They both round to 400 to the nearest hundred, and thei sum is 780 . Which numbers could Ava be thinking of? \\
Show your working out: \\
Answer \\
Ava's numbers:
\end{tabular} &  & These children each have one of these number cards. Can you work out which child has which number card? \\
\hline \multicolumn{3}{|c|}{Rounding Reasoning 3} \\
\hline \begin{tabular}{l}
Can you give a number that rounds to 9.83 to \\
Answer \\
Number:
\end{tabular} & nearest hund & th and has a digit sum of 24? Show your working out: \\
\hline
\end{tabular}

\section*{Rounding Reasoning 2b}

Work with your partner to solve the second question on your Rounding Reasoning Talk Partners Activity Sheet.


\section*{Rounding Reasoning 2b}

Work with your partner to solve the second question on your Rounding Reasoning Talk Partners Activity Sheet.


We can see that Oliver's number could be any of the three on the number cards. Chelsea's number could be any except 45673 . Martin's number must be 45589. So we can now match Chelsea to 45 642, and Oliver's number must be 45673.


\section*{Rounding Reasoning 3a}

\section*{Start by reading the question.}

These four numbers all round to 15.1 to the nearest tenth. The numbers each have a different digit sum.


Can you give another number that rounds to 15.1 to the nearest tenth and also has a digit sum of 20 ?

\section*{Rounding Reasoning 3a}

\section*{Then, highlight the key information.}

These four numbers all round to 15.1 to the nearest tenth. The numbers each have a different digit sum.


Can you give another number that rounds to 15.1 to the nearest tenth and also has a digit sum of 20 ?

\section*{Rounding Reasoning 3a}

Next, we think about what we already know.
These four numbers all round to 15.1 to the nearest tenth.
The numbers each have a different digit sum.
15.073
15.13
15.128
15.057

Can you give another number that rounds to 15.1 to the nearest tenth and also has a digit sum of 20 ?

We know that the digits \(5,6,7,8\) and 9 tell us to round up.

We know that the digits 1, 2,3 and 4 tell us to round down.

We know that we need a number between 15.05 and 15.14.

\section*{Rounding Reasoning 3a}

Next, we think about what we already know.
These four numbers all round to 15.1 to the nearest tenth. The numbers each have a different digit sum.
15.073
15.13
15.128
15.057

Can you give another number that rounds to 15.1 to the nearest tenth and also has a digit sum of 20 ?

We know that the digits \(5,6,7,8\) and 9 tell us to round up.

Numbers to 2 decimal places between 15.05 and 15.14 do not have high enough digit sums. For example, 15.05 has a digit sum of 11.15 .14 also only has a digit sum of 11 . Even 15.09 only has a digit sum of 15 . We can't get a digit sum of 20 by using numbers to 2 decimal places. We must need to use numbers to three decimal places.

\section*{Rounding Reasoning 3a}

Next, we think about what we already know.
These four numbers all round to 15.1 to the nearest tenth. The numbers each have a different digit sum.
15.073
15.13
15.128
15.057

Can you give another number that rounds to 15.1 to the nearest tenth and also has a digit sum of 20 ?

We know that the digits
\(1,2,3\) and 4 tell us to round down.

We can try 15.051, 15.052, 15.053 \(\qquad\) up to 15.099 , and 15.111, 15.112, 15.113 ......... up to 15.149 . This is a lot of numbers! To make it a bit simpler, we know that we have to have 15 at the start of the number. The digit sum of 1 and 5 is 6, so we know that the digit sum of the three other digits has to be 14 in order for the number to have a digit sum of 20 .

\section*{Rounding Reasoning 3a}

Next, we think about what we already know.
These four numbers all round to 15.1 to the nearest tenth. The numbers each have a different digit sum.
15.073
15.13
15.128
15.057

Can you give another number that rounds to 15.1 to the nearest tenth and also has a digit sum of 20 ?

We know that we need a number between 15.05 and 15.14.
15.059 rounds to 15.1 to the nearest tenth and has a digit sum of 20.

Can you find any more examples?

\section*{Rounding Reasoning 3a}

Finally, we need to check our answer by looking back at the question.
These four numbers all round to 15.1 to the nearest tenth. The numbers each have a different digit sum.
15.073
15.13
15.128
15.057

Can you give another number that rounds to 15.1 to the nearest tenth and also has a digit sum of 20?

We came up with 15.059.
There are several other possibilities, including
\[
\text { 15.068, 15.077, 15.086, } 15.095 \text { and 15.149. }
\]

\section*{Rounding Reasoning 3b}

Work with your partner to solve the third question on your Rounding Reasoning Talk Partners Activity Sheet.


\section*{Rounding Reasoning 3b}

Work with your partner to solve the third question on your Rounding Reasoning Talk Partners Activity Sheet.

Can you give a number that rounds 9.83 to the nearest hundredth and has a digit sum of 24 ?

We know that the digit sum of 9.83 is 20 , so to make a digit sum of 24, we just need to put a 4 in the thousandths place. We know that 4 means we round down to 9.83 , so 9.834 could be one possible answer.

\section*{Explain Yourself!}

The Y6 class at Anywhere School have been learning about rounding numbers. Some of the children have solved reasoning problems using their rounding skills.

On your Explain Yourself! Reasoning Activity Sheet you will see the children talking about their answers to the problems. Read the questions and their answers, and think about whether you agree or disagree with the children.

Explain your ideas, writing about why you agree or disagree, and referring to rounding numbers in your explanations.

\section*{Planetary Problem}

Venus is one of the closest planets to Earth.
The diameter of Venus is 8000 miles (to the nearest thousand) and the diameter of Earth is 7900 miles (to the nearest hundred).

Saif makes a statement about the two planets.

\section*{Venus must be bigger than Earth because 8000 is bigger than 7900 .}

Do you agree with him?
Talk to your partner about your thoughts.

\section*{Planetary Problem}

Saif isn't quite right. Venus might be bigger than Earth, but we can't know from the information we have.

The diameter of Venus is 8000 miles rounded to the nearest thousand. We don't know the actual diameter - it could be anything between 7500 and 8499.

The diameter of Earth is 7900 miles rounded to the nearest hundred. The actual diameter could be anything between 7850 and 7949.

So Venus could be smaller! We don't know from these figures because they are rounded to different degrees of accuracy. They are not the exact diameters.

\section*{Aim}
- I can solve reasoning problems by rounding numbers to a required degree of accuracy.

\section*{Success Criteria}
- I can break down complex problems into smaller steps.
- I can use mathematical language to explain solutions to problems.


Number and Algebra| Rounding Reasoning
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
I can solve reasoning problems by rounding \\
numbers to a required degree of accuracy.
\end{tabular} & & \\
\hline \begin{tabular}{l} 
I can break down complex problems into \\
smaller steps.
\end{tabular} & & \\
\hline \begin{tabular}{l} 
I can use mathematical language to explain \\
solutions to problems.
\end{tabular} & & \\
\hline
\end{tabular}

Number and Algebra| Rounding Reasoning
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
I can solve reasoning problems by rounding \\
numbers to a required degree of accuracy.
\end{tabular} & & \\
\hline \begin{tabular}{l} 
I can break down complex problems into \\
smaller steps.
\end{tabular} & & \\
\hline \begin{tabular}{l} 
I can use mathematical language to explain \\
solutions to problems.
\end{tabular} & & \\
\hline
\end{tabular}

Number and Algebra| Rounding Reasoning
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
I can solve reasoning problems by rounding \\
numbers to a required degree of accuracy.
\end{tabular} & & \\
\hline \begin{tabular}{l} 
I can break down complex problems into \\
smaller steps.
\end{tabular} & & \\
\hline \begin{tabular}{l} 
I can use mathematical language to explain \\
solutions to problems.
\end{tabular} & & \\
\hline
\end{tabular}

Number and Algebra| Rounding Reasoning
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
I can solve reasoning problems by rounding \\
numbers to a required degree of accuracy.
\end{tabular} & & \\
\hline \begin{tabular}{l} 
I can break down complex problems into \\
smaller steps.
\end{tabular} & & \\
\hline \begin{tabular}{l} 
I can use mathematical language to explain \\
solutions to problems.
\end{tabular} & & \\
\hline
\end{tabular}

Number and Algebra| Rounding Reasoning
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
I can solve reasoning problems by rounding \\
numbers to a required degree of accuracy.
\end{tabular} & & \\
\hline \begin{tabular}{l} 
I can break down complex problems into \\
smaller steps.
\end{tabular} & & \\
\hline \begin{tabular}{l} 
I can use mathematical language to explain \\
solutions to problems.
\end{tabular} & & \\
\hline
\end{tabular}

Number and Algebra| Rounding Reasoning
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
I can solve reasoning problems by rounding \\
numbers to a required degree of accuracy.
\end{tabular} & & \\
\hline \begin{tabular}{l} 
I can break down complex problems into \\
smaller steps.
\end{tabular} & & \\
\hline \begin{tabular}{l} 
I can use mathematical language to explain \\
solutions to problems.
\end{tabular} & & \\
\hline
\end{tabular}

Number and Algebra| Rounding Reasoning
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
I can solve reasoning problems by rounding \\
numbers to a required degree of accuracy.
\end{tabular} & & \\
\hline \begin{tabular}{l} 
I can break down complex problems into \\
smaller steps.
\end{tabular} & & \\
\hline \begin{tabular}{l} 
I can use mathematical language to explain \\
solutions to problems.
\end{tabular} & & \\
\hline
\end{tabular}

Number and Algebra| Rounding Reasoning

I can solve reasoning problems by rounding numbers to a required degree of accuracy.

I can break down complex problems into smaller steps.

I can use mathematical language to explain solutions to problems.```

